Recognize that we have TWO sets of \((P,T)\) data: We then directly use these data in Equation \ref{2B}, \[\begin{align*} \ln \left(\dfrac{150}{760} \right) &= \dfrac{-\Delta{H_{vap}}}{8.314} \left[ \dfrac{1}{313} - \dfrac{1}{351}\right] \\[4pt] \ln 150 -\ln 760 &= \dfrac{-\Delta{H_{vap}}}{8.314} \left[ \dfrac{1}{313} - \dfrac{1}{351}\right] \\[4pt] -1.623 &= \dfrac{-\Delta{H_{vap}}}{8.314} \left[ 0.0032 - 0.0028 \right] \end{align*}\], \[\begin{align*} \Delta{H_{vap}} &= 3.90 \times 10^4 \text{ joule/mole} \\[4pt] &= 39.0 \text{ kJ/mole} \end{align*} \], It is important to not use the Clausius-Clapeyron equation for the solid to liquid transition. The Clausius Clapeyron equation is shown below in a form similar to a linear equation ( ). Why do I do this? Calculate \(\Delta{H_{vap}}\) for ethanol, given vapor pressure at 40 oC = 150 torr. Comment: note that no pressure is given with the normal boiling point. please illustrate with the coulpe of examples based on the below mention formula.Awaiting for your reply. The Clapeyron equation can be developed further for phase equilibria involving the gas phase as one of the phases. Calculate the mole fraction of water (the solvent). Example 1: Vapor Pressure of Water The vapor pressure of water is 1.0 atm at 373 K, and the enthalpy of vaporization is 40.7 kJ mol -1. It's much easier to use a scientific calculator or, as long as you are here, our vapor pressure calculator :). Raoult's law is only accurate for ideal solutions. Since substances undergo a very large increase in molar volume upon vaporization, the molar volume of the condensed phase (liquid in this case) is negligibly small compared to the molar volume of the gas (i.e., \(V_{gas} \gg V_{liquid}\)). Vapor pressure is the pressure exerted by the vapor molecules of a substance in a closed system. The unit of pressure doesn't matter as long as it's the same for both initial and final pressure. Show that the vapor pressure of ice at 274 K is higher than that of water at the same temperature. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. One formula for calculating the boiling point of water uses the known boiling point at sea level, 100C, the atmospheric pressure at sea level and the atmospheric pressure at the time and elevation where the boiling takes place. I only care that that ratio is 3. Take the heat of vaporization of water to be \(40.65 \: \text{kJ/mol}\). makes the integration very easy. Answered: Find the correct statements about the | bartleby With this vapor pressure calculator, we present to you two vapor pressure equations! is the heat of vaporization. { "23.01:_A_Phase_Diagram_Summarizes_the_Solid-Liquid-Gas_Behavior_of_a_Substance" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "23.02:_Gibbs_Energies_and_Phase_Diagrams" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "23.03:_The_Chemical_Potentials_of_a_Pure_Substance_in_Two_Phases_in_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "23.04:_The_Clausius-Clapeyron_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "23.05:_Chemical_Potential_Can_be_Evaluated_From_a_Partition_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "23.E:_Phase_Equilibria_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "01:_The_Dawn_of_the_Quantum_Theory" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "02:_The_Classical_Wave_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "03:_The_Schrodinger_Equation_and_a_Particle_in_a_Box" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "04:_Postulates_and_Principles_of_Quantum_Mechanics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "05:_The_Harmonic_Oscillator_and_the_Rigid_Rotor" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "06:_The_Hydrogen_Atom" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "07:_Approximation_Methods" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "08:_Multielectron_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "09:_Chemical_Bonding_in_Diatomic_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "10:_Bonding_in_Polyatomic_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "11:_Computational_Quantum_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "12:_Group_Theory_-_The_Exploitation_of_Symmetry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "13:_Molecular_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "14:_Nuclear_Magnetic_Resonance_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "15:_Lasers_Laser_Spectroscopy_and_Photochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "16:_The_Properties_of_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "17:_Boltzmann_Factor_and_Partition_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "18:_Partition_Functions_and_Ideal_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "19:_The_First_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "20:_Entropy_and_The_Second_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "21:_Entropy_and_the_Third_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "22:_Helmholtz_and_Gibbs_Energies" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "23:_Phase_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "24:_Solutions_I_-_Volatile_Solutes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "25:_Solutions_II_-_Nonvolatile_Solutes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "26:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "27:_The_Kinetic_Theory_of_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "28:_Chemical_Kinetics_I_-_Rate_Laws" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "29:_Chemical_Kinetics_II-_Reaction_Mechanisms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "30:_Gas-Phase_Reaction_Dynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "31:_Solids_and_Surface_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "32:_Math_Chapters" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", Appendices : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()" }, [ "article:topic", "Clausius-Clapeyron equation", "license:ccby", "source[1]-chem-45509", "autonumheader:yes2", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FPhysical_Chemistry_(LibreTexts)%2F23%253A_Phase_Equilibria%2F23.04%253A_The_Clausius-Clapeyron_Equation, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{1}\): Vapor Pressure of Water, Example \(\PageIndex{2}\): Sublimation of Ice, Example \(\PageIndex{3}\): Vaporization of Ethanol, 23.3: The Chemical Potentials of a Pure Substance in Two Phases in Equilibrium, 23.5: Chemical Potential Can be Evaluated From a Partition Function. Specifically, the negative slope of the solid-liquid boundary on a pressure-temperature phase diagram for water is very unusual, and arises due to the fact that for water, the molar volume of the liquid phase is smaller than that of the solid phase. If the phase equilibrium is between the liquid and gas phases, then \(\Delta_{\alpha \beta} \bar{H}\) and \(\Delta_{\alpha \beta} \bar{V}\) are \(\Delta \bar{H}_\text{vap}\) and \(\Delta \bar{V}_\text{vap}\), respectively. Estimate the heat of sublimation of ice. Legal. theoretical chemistry - Determining the boiling point of a substance No matter how many times I try I cant seem to get it right. By how many degrees should we increase the temperature of the flask to triple the mercury vapor pressure. The following values can be used: Substitution into the Clausius-Clapeyron equation yields, \[ \ln \left( \dfrac{3p_1}{p_1}\right) = - \dfrac{\Delta H_{vap}}{9.314 \dfrac{J}{mol\,K}} \left( \dfrac{1}{318\,K} -\dfrac{1}{298\,K} \right) \nonumber \], \[ \Delta H_{vap} = 43280 \,\dfrac{J}{mol} = 43.28 \, \dfrac{kJ}{mol} \nonumber \]. The Clausius-Clapeyron Equation We will utilize the Carnot cycle to derive an important relationship, known as the Clausius-Clapeyron Equation or the rst latent heat equation. The Clapeyron attempts to answer the question of what the shape of a two-phase coexistence line is. By multiplying both sides by the exponent, we get: 102325P2=e1.1289\small \frac{102325}{P_2} = e^{1.1289}P2102325=e1.1289. For this equilibrium, Equation \(\ref{14.8}\) becomes, \[\dfrac{dP}{dT} = \dfrac{\Delta \bar{H}_\text{vap}}{T (\bar{V}_g - \bar{V}_l)} \label{14.9} \], In this case, \(\bar{V}_g \gg \bar{V}_l\), and we can approximate Equation \(\ref{14.9}\) as, \[\dfrac{dP}{dT} \approx \dfrac{\Delta \bar{H}_\text{vap}}{T \bar{V}_g} \label{14.10} \], Suppose that we can treat the vapor phase as an ideal gas. Problem #8: A 5.00 L flask contains 3.00 g of mercury. obviously used the fourth of the four listed values. Estimate the vapor pressure at temperature 363 and 383 K respectively. A simple relationship can be found by integrating Equation \ref{1} between two pressure-temperature endpoints: \[\ln \left( \dfrac{P_1}{P_2} \right) = \dfrac{\Delta H_{vap}}{R} \left( \dfrac{1}{T_2}- \dfrac{1}{T_1} \right) \label{2}\]. Need help on a maths question on finding a paralle.. Future advice for going into Pre-Calculus? 4.70035 = 0.00012226x (notice I got rid of the negative signs). One can calculate the intrinsic boiling boiling point of a liquid substance using Thermodynamic Properties and applying to the following expression to obtain the 'Thermodynamic Boiling Point'. 8.5: The Clausius-Clapeyron Equation If there are more than two components in the solution, Dalton's law of partial pressures must be applied. This expression makes it easy to see how the phase diagram for water is qualitatively different than that for most substances. Find the full electronic configuration and valence electrons of any periodic element using this electron configuration calculator. These could be solid and liquid, liquid and gas, solid and gas, two solid phases, et. It's normal to use 273. How do you calculate boiling point? + Example - Socratic The vapor pressure of water is 1.0 atm at 373 K, and the enthalpy of vaporization is 40.7 kJ mol-1. Please help me (find all the real zero of x^3-3x^2.. How to find the domain, range, and period of a tri.. What does it mean to 'use prime factorization.. What is the general solution to this differential .. Find the limit (applying L' Hospial rule) f(x.. Find the maximum upward acceleration that can be s.. Trig question! Apply the Clausius-Clapeyron equation to estimate the vapor pressure at any temperature. This calculator will help you make the most delicious choice when ordering pizza. The vapor pressure of water is 1.0 atm at 373 K, and the enthalpy of vaporization is 40.7 kJ mol-1. That's a fair assumption, I would think. Experimentally. Apply the Clausius-Clapeyron equation to estimate the vapor pressure at any temperature. The normal boiling point of benzene is 80.1C, and the heat of vaporization is Hvap = 30.7 kJ/mol. This is the case for either sublimation (\(\text{solid} \rightarrow \text{gas}\)) or vaporization (\(\text{liquid} \rightarrow \text{gas}\)). There is a deviation from experimental value, that is because the enthalpy of vaporization varies slightly with temperature. As you encounter different presentations, you will probably see whatever form of the equation the instructor (or the textbook writer) learned. Let's have a closer look at two vapor pressure equations: the Clausius-Clapeyron equation and Raoult's law. Resolve the vapor pressure equation considering the 2nd point pressure is 0.6 atm. ln102325PaP2=40660Jmol8.3145JmolK(1263K1280K)\small ln\frac{102325Pa}{P_2} = \frac{40660\frac{J}{mol}}{8.3145 \frac{J}{mol \cdot K}\cdot (\frac{1}{263K}-\frac{1}{280K})}lnP2102325Pa=8.3145molKJ(263K1280K1)40660molJ. CALCULLA - Boiling point at any pressure calculator Recognize that we have TWO sets of \((P,T)\) data: We then directly use these data in Equation \ref{2B}, \[\begin{align*} \ln \left(\dfrac{150}{760} \right) &= \dfrac{-\Delta{H_{vap}}}{8.314} \left[ \dfrac{1}{313} - \dfrac{1}{351}\right] \\[4pt] \ln 150 -\ln 760 &= \dfrac{-\Delta{H_{vap}}}{8.314} \left[ \dfrac{1}{313} - \dfrac{1}{351}\right] \\[4pt] -1.623 &= \dfrac{-\Delta{H_{vap}}}{8.314} \left[ 0.0032 - 0.0028 \right] \end{align*}\], \[\begin{align*} \Delta{H_{vap}} &= 3.90 \times 10^4 \text{ joule/mole} \\[4pt] &= 39.0 \text{ kJ/mole} \end{align*} \], It is important to not use the Clausius-Clapeyron equation for the solid to liquid transition. We now integrate both sides, which yields, \[\text{ln} \: P = -\dfrac{\Delta \bar{H}_\text{vap}}{RT} + C \nonumber \], where \(C\) is a constant of integration. The Clausius-Clapeyron Equation To understand that the equilibrium vapor pressure of a liquid depends on the temperature and the intermolecular forces present. Discover crystallography with our cubic cell calculator. Vapor Pressure - Normal Boiling Point & Clausius Clapeyron Equation { "8.01:_Prelude_to_Phase_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.02:_Single_Component_Phase_Diagrams" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.03:_Criterion_for_Phase_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.04:_The_Clapeyron_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.05:_The_Clausius-Clapeyron_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.06:_Phase_Diagrams_for_Binary_Mixtures" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.07:_Liquid-Vapor_Systems_-_Raoults_Law" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.08:_Non-ideality_-_Henry\'s_Law_and_Azeotropes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.09:_Solid-Liquid_Systems_-_Eutectic_Points" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.10:_Cooling_Curves" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.E:_Phase_Equilibrium_(Exercises)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "8.S:_Phase_Equilibrium_(Summary)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "01:_The_Basics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "02:_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "03:_First_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "04:_Putting_the_First_Law_to_Work" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "05:_The_Second_Law" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "06:_Putting_the_Second_Law_to_Work" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "07:_Mixtures_and_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "08:_Phase_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "09:_Chemical_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "10:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "11:_Chemical_Kinetics_I" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "12:_Chemical_Kinetics_II" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.b__1]()" }, [ "article:topic", "Clausius-Clapeyron equation", "authorname:flemingp", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FPhysical_Chemistry_(Fleming)%2F08%253A_Phase_Equilibrium%2F8.05%253A_The_Clausius-Clapeyron_Equation, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Temperature Dependence to \(\Delta H_{vap}\).
Gehl 360 Skid Steer For Sale,
Articles H